Буфер барабан веревка

Метод «Барабан-Буфер-Веревка» (DBR–Drum-Buffer-Rope) – один из оригинальных вариантов «выталкивающей» логистической системы, разработанной в ТОС (Theory of Constraints) ,,. Она очень похожа на систему лимитированных очередей FIFO, за исключением того, что в ней не ограничиваются запасы в отдельных очередях FIFO.

Рис.9. Структура метода «Барабан-Буфер-Веревка» (DBR).

Вместо этого устанавливается общий лимит на запасы, находящиеся между единственной точкой составления производственного расписания и ресурсом, ограничивающим производительность всей системы, РОП (в примере, приведенном на рисунке 9, РОП-ом является участок 3). Каждый раз, когда РОП завершает выполнение одной единица работы, точка планирования может запускать в производство еще одну единицу работы. Это в данной логистической схеме называется «веревкой» (Rope). «Веревка» — это механизм управления ограничением против перегрузки РОП. По существу, это график отпуска материалов, который предотвращает поступление работы в систему в темпе более высоком, чем она может быть обработана в РОП. Концепция веревки используется для предотвращения появления незавершенного производства в большинстве точек системы (кроме защищенных плановыми буферами критических точек).

Поскольку РОП диктует ритм работы всей производственной системы, то график его работы именуется «Барабаном» (Drum). В методе DBR особое внимание уделяется именно ресурсу, ограничивающему производительность, поскольку именно он определяет максимально возможный выход всей производственной системы в целом, так как система не может производить больше, чем ее самый маломощный ресурс. Лимит запасов и временной ресурс оборудования (время его эффективного использования) распределяется так, чтобы РОП всегда мог вовремя начать новую работу. Этот в рассматриваемом методе именуется «Буфером» (Buffer). «Буфер» и «верёвка» создают условия, предотвращающие недогрузку или перегрузку РОП.

Заметим, что в «вытягивающей» логистической системе DBR буферы, создаваемые перед РОП, имеют временной, а не материальный характер.

Временной буфер есть резерв времени, предусматриваемый для защиты запланированного времени «начала обработки», с учетом разброса в прибытии на РОП конкретной работы. Например, если расписание РОП требует начать конкретную работу на участке 3 во вторник, тогда материал для этой работы должен быть отпущен достаточно рано, чтобы все предшествующие обработке РОП шаги (участки 1 и 2) были закончены еще в понедельник (т.е. за один полный рабочий день до требуемого срока). Буферное время служит для «защиты» наиболее ценного ресурса от простоев, поскольку потеря времени этого ресурса эквивалентна невозвратной потери в конечном результате всей системы. Поступление материалов и производственных заданий может осуществляться на основе заполнения ячеек «Супермаркета» Передача деталей на последующие этапы обработки после их прохождение через РОП уже не являются лимитируемым FIFO, т.к. производительность соответствующих процессов заведомо выше .

Рис.10. Пример организации буферов в методе DBR в зависимости от положения РОП.

Необходимо отметить, что только критические пункты в цепи производства защищаются буферами (см. рисунок 10). Такими критическими пунктами являются:

сам ресурс с ограниченной производительностью (участок 3),

любой последующий этап процесса, где происходит сборка детали, обработанной ограничивающим ресурсом с другими частями;

отгрузка готовой продукции, содержащей детали, обработанные ограничивающим ресурсом.

Поскольку в методе DBR защита от возможных отклонений сосредоточена в наиболее критичных местах производственной цепи и устраняется во всех прочих местах, время производственного цикла может быть сокращено, иногда на 50 процентов или более, без ухудшения надежности в соблюдении сроков отгрузки продукции потребителям.

Рис.11. Пример диспетчерского контроля прохождения заказов в РОП в методе DBR.

Алгоритм DBR – это обобщение известного метода OPT ,, который многие специалисты называют электронным воплощением японского метода «Канбан», хотя на самом деле, между логистическими схемами восполнения ячеек «Супермаркета» и методом «Барабан-Буфер-Веревка», как мы уже видели, имеется значительная разница.

Недостатком метода «Барабан-Буфер-Веревка» (DBR) является требование существования РОП, локализуемого на заданном горизонте планирования (на интервале расчета расписания для выполняемых работ), что возможно только в условиях серийных и крупносерийных производств. Однако для мелкосерийных и единичных производств локализовать РОП, в течение достаточно длительного интервала времени, вообще говоря, не удается, что значительно ограничивает применимость рассмотренной логистической схемы для этого случая.

Особенности коммерческих APS-алгоритмов

Питеркин С.В.

«Продвинутые» коммерческие APS состоят, как правило, из 2 частей. Первую условно можно назвать APS–synchronizer’ы, их задача – рассчитать (синхронизированные и оптимизированные) планы по всему «дереву» изделия (далее – СИ — Состав Изделия) или заказа, и/или для всего производства-снабжения-цепочки поставок. Вторая — APS-scheduler’ы, задача которых – оптимизация по какому-либо критерию прохождения производственных, несвязанных между собой заданий через группу оборудования. Первые, как правило, при планировании рассматривают все ресурсы (материалы, производственные ресурсы,…), вторые, как правило (есть исключения), – только производственные. APS-scheduler’ы под разными названиями выступают в качестве «планировщиков» в MES-системах.

APS–synchronizer, «классический» подход

Что есть сущность APS-synchronizer’ов? Это – могучие «калькуляторы», которые могут, с теми или иными допущениями, быстро составить детализированный и точный (на момент расчета!) производственный план. Во многих случаях — и с элементами оптимизации по различным критериям. В этом — их большой плюс и возможность их легкой продажи: «вот она, та самая волшебная кнопка, которая будет мне считать реальный (реально выполнимый) план»! Но будет ли?..
Возьмем очередные плюсы APS: не планирует в прошлое, планирует с учетом загрузки ресурсов (люди, машины, инструменты, …), каждый раз создает реально выполнимый план, и т.п.
А теперь «темная сторона силы». И прежде всего: да, планирует, но какой ценой? Цена:
На последнее условие у нас редко кто обращает внимание (а вообще-то, мало кто даже и подозревает, что нет «в природе» «производственного планирования», состоящего из одного (супер) плана… А это условие – определяющее и: не-решение задач планирования верхних уровней ведет к GIGO (Garbage-In-Garbage-Out).
Далее. Недостатки алгоритма при использовании в реальных условиях:

  1. при несоблюдении п.1 выше — неточный план, не попадающий в «окно запуска» — рабочие стоят…
  2. при несоблюдении п.2 выше — план сдвигается вправо. И так — каждый день…
  3. многономенклатурное производство сложной продукции и проблемы по п.3. выше – большое время отклика системы.

п5 – опускаем: прежде чем бегать, надо научиться ходить…
Плюс, еще интересные APS особенности:

  1. избыточная сложность и «тяжесть» алгоритмов, многократный overkill для большинства прикладных «наших» производственных задач, и при этом, почти полная невозможность решить следующие, «маловажные» задачи;
  2. «заточенность» APS на западную индустриальную модель, модель абсолютно зрелого и абсолютно рыночного завода, и «западной» размерности;
  3. невозможность APS жестко резервировать запасы и производственные задания (ожидаемые приходы) за каким-либо головным заказом. При каждом перепланировании APS будет «отнимать» резервы как мощности, так и запасов под заказы, ставшие более приоритетными. Отсюда – чрезвычайно «нервный», постоянно меняющийся план. Более того, в сложном машиностроении/приборостроении, в производстве любят (и это действительно надо, почему – отдельный разговор) жестко резервировать запасы НзП и материалов под конкретные головные изделия (под серийный номер выпускаемой «машины»). Но APS про это не хочет ничего знать;
  4. несмотря на то, что большинство дискретных APS — позаказные, при каждом перепланировании они «забывают» про планы прошлого заказа, и строят новый. В жестком позаказном производстве, где нужны жесткие связки заказа от головного изделия до материала это неприменимо;
  5. APS строят Мега-точные и оптимизированные планы. Каждый раз – новые. Каждый раз – с «крайней», сдвинутой вправо новой датой выполнения заказа. И если еще ничего не запущено, даже будут показывать отклонения первоначального плана от нового. Но, если многое уже запущено, т.е. есть производственные задания, и среди них есть отстающие, APS почти никак на это не среагирует – даст сигнал запустить новое или сдвинет всю сеть заказа. Не показав, какие и на сколько ПЗ отстают. Для наших «традиционно-ориентированных» и даже уходящих от «традиционности» производств, имеющих склонность выполнять заказ под конец периода это неприемлемо;
  6. есть и еще особенности, например: крайне трудно, если вообще возможно с APS реализовать «TOC MTA» управление, со скользящим расчетом «прогноза» достижения «красного» уровня общих, «НзП+ готовые изделия» запасов;
  7. цитируя близко к тексту Голдратта («Необходимо, но недостаточно»): «… из своей жесткости в точности и детализации планирования APS «классно» распространяют локальные «возмущения» на все производство, всю «сеть заказов»…»
  8. …и еще короткое замечание: в коммерческих APS не предусмотрено «обвязки», т.е. транзакционной системы, предназначенной для сбора информации и запасах, ходе производства, для автоматизации и управлении (электронным) производственным документооборотом и объектами (наверное единственная «классическая» APS форма «простого» анализа – диаграмма Ганта. У многих «околопроизводственников» вызывает восхищение, в жизни же практически неприменима). На западе подразумевается интеграция APS с ERP системами (и, внимание, повтор! Обязательная логическая интеграция с общей системой планов), но у нас их практически ни у кого в производстве (корректно внедренных и правильно используемых) — нет. Да и сама идея применимости устаревшей ERP модели сейчас — весьма сомнительна.

Постановка же с нуля системы «сбора» и «обработки» информации – это, как минимум, половина всего объема усилий по построению правильной производственной системы.
Совсем ли APS безнадежны? Нет, также, как и ERP. С тем условием, что вы будете подходить к APS как к «простому» калькулятору, или, что лучше — почти прямая аналогия, — как к процессору. Если вам нужно собрать компьютер, под определенные условия, вам нужен процессор. Но еще много-много-много чего… та самая «обвязка», п.7 выше. И при этом — будьте готовы – потребуется «слегка влезть» в процессор, подправить некоторые особенности алгоритмов под вас… А это, в случае процессора и даже весьма квалифицированного сборщика,– практически невозможно. С APS – теоретически возможно, практически — … Но, если знаете, как это сделать (и собрать и «подпилить»), тогда — удачи (и это без шуток). Если нет – готовьте себе прокрустово ложе APS. А это будет пострашнее, чем «холодная и костлявая рука ERP» «из коробки»…
Если альтернатива? Для «наших» производств?
Созданный нами на основе вот уже 20и летней практики построения методологии и внедрения ИТ систем, в т.ч. (давно это было…) тех самых ERP и APS. Чем наш подход отличается? Простотой… Реализовав практически все возможности «сетевого» APS (сетевое позаказное планирование, загрузку мощностей (по ресурсной модели), и некоторые другие) и устранив указанные выше недостатки, мы, в СПМ (SCMo), строим концепцию планирования на одновременном существовании в системе двух видов планов: «директивного» («идеальный» «точно вовремя» план) и «расчетного».
Которые постоянно сравниваются между собой, с учетом и ситуации в производстве в т.ч., с запущенными производственными заданиями. Таким образом давая производственным руководителям то, чего им больше всего не хватает: не супер-точного плана (он, возможно (!) нужен на коротком промежутке времени…), но отклонений — «узкие места» как в производстве, так и в «сети» заказа. Правильное определение «правильного» плана производства: «План не должен быть точным, он должен быть достоверным!» И рабочим. Что еще особенного у нас? Интерфейсная часть (экранные формы мониторинга. В самой системе – не BI) и обязательная «подгонка» (иногда и с подгонкой «ядра») алгоритмов расчета под особенности параллельно определяемой производственной системы предприятия (мы никогда не автоматизируем заводы со слов сотрудников…); бОльшая, по сравнению с равнозначными APS, скорость вычисления и пр.
Что с таким подходом мы потеряли? Ничего. (мега) Оптимизация, т.е. составление плана с учетом всех и всяческих, разных-преразных ограничений – не используется в начале работы системы по нашей методологии. Но не потому, что не может система, а потому, что производство — не готово. Ощутимо это? Пока, и в ближайшей перспективе — нет, т.к. все эти «мелочи» – суть внутрицехового управления. И потом — зачем нам «ловить блох» в «пооперационном планировании станочного парка», если выпуск цеха/участка слабо синхронизирован с выпуском остальных «партнеров»? (это, кстати, типичный подход многих «горе-продавцов» MES: MES–оптимизация внутрицеховой работы, без оглядки на остальных). А если планы по производственной цепочке синхронизированы, не проще ли управлять «внутри-цеха» Lean-инструментарием?

А если все-же кто-то захочет оптимизацию уже на уровне межцехового/участкового планирования? Без вопросов! Причем в рамках той же самой модели (необходимо будет детализировать ресурсы…)

APS– scheduler

Они-же — «калькуляторы» планирования MES. Их место – внутрицеховое/участковое планирование. Оно возможно и оправдано тогда и только тогда, когда производственная цепочка синхронизована. А если «по серьезному» — тогда и только тогда, когда реализован п5 выше (выстроена общая система планов). В этом случае, при наличии явно выраженных и сложно-планируемых вручную «узких мест» они могут применяться. Прежде всего, для определения последовательности в очереди на обработку перед конкретным участком/станком или последовательными группами оборудования. В силу этого APS–scheduler’ы «начинали свою жизнь» как sequencer’ы, как правило, в системах имитационного моделирования.
Если у вас позаказное производство, каждый заказ – существенно отличается по параметрам наладки и обработки оборудования, заказов/вариантов прохождения и обработки – много, нельзя заранее задать правила их размещения – да, в этом случае эта часть APS может вам помочь. С учетом того, что вы готовы заплатить указанную выше цену (не все «особенности» APS–scheduler’ов указаны). И с учетом следующего комментария: если «муда», генерируемая этой частью APS меньше, чем «муда» без его использования. Первая муда – это неизбежное нормативное увеличение циклов выполнения заказа, необходимое для задания «окна оптимизации», в котором scheduler будет по своему усмотрению «тасовать» производственные задания, и, связанный с эти рост НзП; вторая – потери на переналадках, потери пропускной способности узкого места, риск срыва сроков выполнения заказа. В моей практике, в дискретных производствах, крайне редко APS–scheduler необходим. Многие задачи внутрицехового управления решаются «примитивными» Lean и/или ТОС инструментами, а так-же, «простой», через ИТ-методы, визуализацией происходящего с элементами полу автоматизированного управления очередями.

«Непрерывка»

Использование «правильных» APS/MES в «непрерывке» («где все течет»), металлургии, пищёвке, и для решения некоторых других узко-специфических задач в производствах, где оборудование (его использование) – критично для процесса – не обсуждается. Они (системы) там просто должны быть.

Сокращения

SCM, SCMo: Supply Chain Management и Supply Chain (Planning) and Monitoring – управление производственными цепочками, Планирование и Мониторинг Производственных цепочек. Набор базирующихся на классической MRP-II концепции методов и автоматизированных систем, позволяющий планировать производство и закупки синхронно, с учетом существующих и будущих материальных и производственных ресурсов. Как в рамках отдельного предприятия, так и для распределенных систем (производственно-логистических цепочек).
APS — Advanced Planning and Scheduling, «Продвинутое» Планирование или, ближе к смыслу, синхронное планирование и оптимизация. Класс информационных систем – планировщиков производства и запасов, в которых, вычисляющих планы производства и/или уровни запасов с использованием оптимизационных алгоритмов. В классической системе планов предприятия могут соответствовать (зависит от конкретной системы конкретного производителя) уровням планирования от DP до Scheduling.
MES — Manufacturing Execution System, система производственного управления (исполнения!). Класс информационных систем, предназначенных для детального планирования и управления производством, как правило, на уровне оборудования и операций. В ряде случаев с использованием интеграции с оборудованием. Принципиально отличаются для разных типов производства.
ERP — Enterprise Resource Planning – планирование ресурсов предприятия. Маркетинговый термин и широко определенный класс информационных систем позволяющих интегрировано автоматизировать некоторые области деятельности предприятия, как правило, без областей планирования, бюджетирования, ведения состава изделия и некоторых других.
MRP-II — Manufacturing Resource Planning, Планирование Производственных Ресурсов – западная 1970х гг прошлого века концепция управления производством и операциями. Планирование производства и запасов в которой выполняется по MRP (Material Requirements Planning) и CRP (Capacity Requirements Planning) алгоритмам.

На фото наша собственное «изобретение», произведенное для следования принципу Теории ограничения «барабан-буфер-веревка».
Как и что мы с ними делаем?
Это стеллажи с ячейками для хранения валов.
Как вы видите, посчитать сколько деталей произведено можно за 2 секунды- десятикратная разрядность это позволяет.
Станок, на котором производят валы, является «узким местом». Поэтому важно производить только необходимое количество определённого вида валов‼️. Произведенные партии валов рабочий везет в цех сборки и выкладывает в порядке от 1 до 150.
Сборщик тоже партиями забирает, в обратном порядке — от 150 до 1. У него страховой минимум — 75 штук. Как только количество достигает этого минимума — он сообщает, что надо производить валы определенного вида.
Почему так надо?
Итак, каким принципам по методу «барабан — буфер — верёвка» мы следуем:

  • «барабан» — производство должно работать по некоторому ритму. Вал задает нам этот ритм. Так как станок для его производства — узкое место в производстве.
  • «буфер» — чтобы все остальное производство не «стояло», должен быть запас материалов (страхуем от простоев другие участки)
  • «верёвка» — материалы должны подаваться в производство только тогда, когда запасы перед ограничением достигли некоторого минимума и не раньше, чтобы не перегрузить производство. В нашем случае минимум — это 75 штук и максимум 150 — необходимый объём деталей на месяц вперёд.

APS-системы обладают широкими возможностями настройки и конфигурирования, позволяющей более эффективно реагировать на быстро меняющиеся запросы потребителя. APS перераспределяет сырье и производственные мощности для приведения в соответствие спроса и производственных мощностей предприятия.

APS-система представляет технологическую возможность для более эффективного использования производственных ресурсов как для производств непрерывного цикла, так и дискретных производств. APS позволяет планировщикам автоматизировать, оптимизировать и сравнивать производственные планы, отражающие текущее количество ресурсов и доступность материалов, проводить синхронизацию с заводами и производственными участками для корректного управления рабочей силой и складскими запасами, соблюдения дат поставки и повышения рентабельности.

При правильном внедрении APS решает такие проблемы планирования, как: нахождение «узких мест» в производственном процессе, выход из строя оборудования, простои персонала, замена дорогостоящих линий производства, ускорение отправки заказов и нехватка материалов.

Буфер барабан веревка

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *